Description: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning. Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind. Andrew G. Barto is Professor Emeritus in the College of Computer and Information Sciences at the University of Massachusetts Amherst.
Price: 108 USD
Location: East Hanover, New Jersey
End Time: 2024-12-04T17:43:05.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 60 Days
Refund will be given as: Money Back
Return policy details:
EAN: 9780262039246
UPC: 9780262039246
ISBN: 9780262039246
MPN: N/A
Book Title: Reinforcement Learning: An Introduction (Adaptive
Number of Pages: 552 Pages
Publication Name: Reinforcement Learning, Second Edition : an Introduction
Language: English
Publisher: MIT Press
Item Height: 1.5 in
Publication Year: 2018
Subject: Programming / Algorithms, Intelligence (Ai) & Semantics, Neural Networks
Item Weight: 41.6 Oz
Type: Textbook
Subject Area: Computers
Item Length: 11.2 in
Author: Richard S. Sutton, Andrew G. Barto
Item Width: 7.3 in
Series: Adaptive Computation and Machine Learning Ser.
Format: Hardcover